Brief Community Description	Alliances	5	Distribution in the MSPA	Habitat Affinities
		Wide		
Vernal pools are seasonal	There are	Vernal pool ecosytems are	Within the MSPA vernal	After sufficient rainfall, pools form in
depressional wetlands that collect	no vernal	found in the western United	pool habitat is found in	depressions above an impervious soil layer
	pool	States extending from	MU2 (Kearny Mesa, Mira	or layers associated with poorly drained
table with water ponding from a few	alliances	southern Oregon south	Mesa, Montongermy Field,	soils [5]. Vernal pools cannot form without
weeks to a few months [1]. Vernal	currently	through California and into	Tierrasanta), MU3 (Otay	these nearly impermeable surface or
pools are often completely dry for	classified	northern Baja California,	lakes, Procotor Valley,	subsurface (the claypan or the hardpan)
most of the summer and fall months.	and	Mexico [1]. "Vernal" or	Otay Mesa, Marron Valley),	soil layers which create the perched water
They typically occur on clay and loamy	mapped in	ephemeral pools can also be	MU5 (Ramona), MU6 (Del	table that is necessary for the presence of
clay soils [2]. A collection of vernal	the MSPA.	found in Chile, South Africa,	Mar Mesa, Lopez Ridge,	ponding in a flat to gently sloping
pools that occur in close proximity, on		Australia, and in the	Carlsbad, Carmel	topography (<10% slope) [1, 9]. They can
the same soil series and are		Mediterranean Basin where	Mountain), and MU8 (San	be found on mesa tops above primary
connected hydrologically are defined		they are influenced by a	Marcos) [7]. Although	drainages or in valleys at the low end of the
as a vernal pool complex and are		similar Mediterranean climate	military bases are not	watershed [3]. Functioning vernal pool
often part of an undulating landscape		[5]. In California vernal pools	included in the MSPA,	ecosystems are affected by subtle
frequently called mima mound		can be found from Modoc	vernal pools are found on	differences in the duration and pattern of
topography [1,3]. Vernal pools are		County south to Otay Mesa,	MCB Camp Pendleton and	ponding, water and soil chemistry,
closely tied to the upland vegetation		San Diego County. In Baja,	MCAS Miramar and are	temperature regimes in winter, and the
communities that surround them which		California, Mexico vernal pool	under the protection of the	chance of summer rain [10]. Within the
include needlegrass grassland, annual		habitat is found adjacent to	Integrated Resource	MSPA, vernal pools are associated with
grasslands, coastal sage scrub,		the international Border and	Managemnt Plans [7,8].	Huerhuero, Stockpen, Redding,
maritime succulent scrub, chaparral,		south along the coast to the		Olivenhain, Las Flores, and Placentia soil
and montane wet meadow [4, 5].		vicinity of San Quintin [2,3,6].		series [3, 5]. Vernal pools provide habitat
				that is used by a wide variety of animals
				throughout their life cycle [4, 11].

Ecosystem Processes	Threats	Special Considerations
Soils, topography, and a Mediterranean climate (most precipitation falls from November to March) create the necessary conditions for vernal pool formation [3,12]. The duration of ponding and subsequent rainfall trigger germination in plants and cyst hatching in crustaceans; these species complete their lifecycle as the pools begin to dry [11,13]. Vernal pools can be described as a few basins or as a complex of hydrologically connected pools with a shared watershed and includes all the areas needed to collect rainfall and surface flows needed to adequately fill the pools within the complex [9]. Hydrology is directly related to the pool's capacity to maintain functionality and support endemic vernal pool species [10,12]. Some complexes have substantial watersheds, while other pools fill almost entirely from direct rainfall [1, 8]. Watersheds can be localized or part of a larger more complex landscape [5]. Vernal pool basins are also dependent on the adjacent geomorphology for maintenance of their unique hydrological conditions and the connection between pools, which is important for gene flow and dispersal [1]. Surface and subsurface lateral flows between vernal pools and the surrounding uplands within a watershed influence the onset and level of inundation, and the seasonal drying of vernal pools; subsurface inflows from surrounding soils may be an important factor in filling some vernal pools [9,14].	isolation; OHV use; military activities; altered hydrology and watersheds; soil compaction; erosion; International Border security; invasion by nonnative species (plant and animal); and human access and disturbance [6,15]. Destruction of watersheds and disruption of hydrological systems can create further impacts by creating barriers to dispersal, such that pollination and reproductive output may be inhibited [16]. Indirect threats cumulatively damage vernal pools and include exposure to pesticides, water and air pollution, and fire and wildfire suppression activities [5]. Drought may also indirectly result in	and their predators, and avian species [4,11]. Preserving small, isolated, fragmented preserves may not sustain the multiscale ecological processes associated with

References

[1] City of San Diego. 2016. Draft Vernal Pool Habitat Conservation Plan. City of San Diego Planning Department, San Diego California.

[2] California Native Plant Society Rare Plant Program. 2016. *Inventory of Rare and Endangered Plants* (online edition, v8-02). California Native Plant Society, Sacramento, CA. Website http://www.rareplants.cnps.org [accessed 08 November 2016]

[3] Bauder, E. T., and S. McMillan. 1998. Current Distribution and Historical Extent of Vernal Pools in Southern California and Northern Baja California, Mexico. Pages 56-70 in C. W. Witham, E. T. Bauder, D. Belk, and W. R. Ferren, Jr., editors. Ecology, Conservation, and Management of Vernal Pool Ecosystems. California Native Plant Society, Sacramento, CA.

[4] Thorp, R.W. & J.M. Leong. 1998. Specialist Bee Pollinators of Showy Vernal Pool Flowers, pp.169-179. In C.W. Witham, E.T. Bauder, D. Belk, W.R. Ferren Jr., and R. Ornduff [eds.], Ecology, Conservation and Management of Vernal Pool Ecosystems- Proceedings from a 1996 conference. California Native Plant Society, Sacramento, USA.

[5] U.S. Fish and Wildlife Service (USFWS). 1998. Vernal Pools of Southern California Recovery Plan. U.S. Fish and Wildlife Service, Portland, Oregon. 113+ pp

[6] U.S. Fish and Wildlife Service (USFWS). 2010. *Eryngium aristulatum* var. *parishii San Diego button celery 5-Year Review: Summary and Evaluation*; U.S. Fish and Wildlife Service Carlsbad Fish and Wildlife Office, Carlsbad, CA

[7] MSP-MOM. 2014. *Management Strategic Plan Master Occurrence Matrix*. https://www.sciencebase.gov/catalog/item/53e27963e4b0fe532be3bddf [8] U.S. Fish and Wildlife Service (USFWS). 2010; *Pogogyne abramsii* San Diego Mesa Mint 5-Year Review: Summary and Evaluation; U.S. Fish and Wildlife Service Carlsbad Fish and Wildlife Office Carlsbad, CA

[9] Bauder, E.T., A.J. Bohonak, B. Hecht, M.A. Simovich, D. Shaw, D. G. Jenkins, and M. Rains. 2009. *A Draft Regional Guidebook for Applying the* Hydrogeomorphic Approach to Assessing Wetland Functions of Vernal Pool Depressional Wetlands in Southern California. San Diego State University, San Diego, CA.

[10] Bauder, E. T. 2000. Inundation Effects on Small-Scale Plant Distributions in San Diego, California Vernal Pools Aquatic Ecology vol. 34:43-61.

[11] Zedler, P.H. 1987. *The Ecology of Southern California Vernal Pools: A Community Profile*. Biological Report 85 (7.11). U.S. Fish and Wildlife Service, Washington, DC, USA.

[12] Bauder, E.T. 2005. The Effects of an Unpredictable Precipitation Regime on Vernal Pool Hydrology. *Freshwater Biology* vol 50, No. 12: 2129-2135.
[13] U.S. Fish and Wildlife Service (USFWS). 1997. Determination of Endangered Status for the San Diego Fairy Shrimp. *Federal Register* vol. 62, No. 22: 4925–4939.

[14] Hanes, T., and L. Stromberg. 1998. Hydrology of Vernal Pools on Non-Volcanic Soils in the Sacramento Valley. *Ecology, Conservation, and* Management of Vernal Pool Ecosystems XX: 38-49.

[15] Bauder, E. T. 1987. Threats to San Diego Vernal Pools and a Case Study in Altered Pool Hydrology. Pages 209-214 in T. S. Elias, editor.

Conservation and Management of Rare and Endangered Plants: Proceedings of a California Conference on the Conservation and Management of Rare and Endangered Plants. California Native Plant Society, Sacramento, CA.

[16] Bauder, E.T. 1996. Exotics in the Southern California Vernal Pool Ecosystem. 1996 Symposium proceedings, California Exotic Pest Plant Council (CalEPPC).

Vernal Pool Vegetation Profile

[17] Seager, R., M. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H-P. Huang, N. Harnik, A. Leetmaa, N-C. Lau, C. Li, J. Velez, and N. Naik. 2007. Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America. Science 316:1181-1184.
[18] Diffenbaugh, N. S., D. L. Swain, and D. Touma. 2015. Anthropogenic Warming has Increased Drought Risk in California. *Proceedings of the National* Academy of Sciences 112:3931-3936.

Brief Community Description	Alliances	Current Distribution Range	Distribution	Habitat Affinities
		Wide	in the MSPA	
The alkali playas found in the Ramona Grasslands differ in species composition from most alkali playas, sinks, or meadows described in the literature [1, 2]. Alkali playas often undergo periods of inundation, frequent and rapid evaporation, and subsequent excretion and accumulation of salts and minerals in the underlying poorly drained soil strata [3]. A unique flora develops in association with the moisture gradient, when water moves toward the center of the depression during evaporation [4]. The Ramona Grasslands support alkali playas/vernal swales that are associated with the Santa Maria Creek floodplain.	There are no alkali playa alliances currrently classified and mapped in the MSPA.	In cismontane San Diego, alkali playas are found in dry lakes at Lake Henshaw, Clark Dry Lake, and the Borrego Sink [2]. A group of alkali	Alkali playas/vernal swales are found in MU5: Ramona in the Ramona Grasslands and along Santa Maria Creek [6]. Twenty-three alkali playas are found in	They are associated with poorly drained Visalia sandy loam soils that have a high salinity and/or alkalinity (pH values ranging between 7.5 and 10) [5]. Alkali playas are found on 0 to 2 percent slopes in an undulating landscape which creates the swales and basins [7]. Ramona grassland alkali playas/vernal swales typically support Parish's brittlescale (Atriplex parishii), Coulter's saltbush (Atriplex cf. coulteri;), dwarf peppergrass (Lepidium latipes), vernal pool plantain (Plantago bigelovii), alkali barley (Hordeum depressum), and southern tarplant (Centromadia parryi ssp. australis) [5; 8]

Ecosystem Processes	Threats	Special Considerations
pools in the same area [1]. Multiple wet-dry cycles during one growing season are	Threatened by habitat destruction and fragmentation from urban and agricultural development, alteration of hydrology and floodplain dynamics, off-road vehicle activity, trampling by cattle and sheep, weed abatement and fire suppression practices (including disking and plowing), and competition from invasive plant species [4,11]. Continued growth and development in the town of Ramona threatens to degrade the water quality downstream of Santa Maria Creek thereby affecting the associated ephemeral aquatic habitats [5]. Nonnative annual grasses, including filaree, wild oat, rip-gut grass, vinegar weed, Bermuda grass, and ragweed, continue to threaten the Santa Maria Creek watershed and native species diversity [12]. Destruction of watersheds and disruption of hydrological systems can create further impacts by creating barriers to dispersal, such that pollination and reproductive output may be inhibited [13]. Drought may also indirectly result in a reduction in native plant populations which increases weed invasion in native habitats, including the surrounding watersheds, as well as prolonged dry periods [9].	Protecting land within the Ramona Grasslands Preserve from future development would minimize Santa Maria Creek watershed stressors, future fragmentation, water pollution from grazing and agricultural practices, and invasivion of nonative plants [5]. The Nature Conservancy has protected nearly 4000 acres within the Ramona Grasslands Preserve which is currently under the management of San Diego County Parks and Recreation [7]. A Resource Management Plan has been developed that incorporates protection and management of Santa Maria Creek and its associated wetlands to maintain existing natural drainages and watersheds and to restore or minimize changes to natural hydrological processes [7].

Alkali Playa Vegetation Profile

References

[1] Conservation Biology Institute. 2004. Framework Management and Monitoring Plan Ramona Grasslands Open Space Preserve San Diego County. California

[2] Oberbauer, T., M. Kelly, and J. Buegge. 2008. *Draft Vegetation Communities of San Diego County*. Based on "Preliminary Descriptions of the Terrestrial Natural Communities of California", Robert F. Holland, Ph.D., October 1986.

[3] Holland, R. F. 1986. Preliminary Descriptions of the Terrestrial Natural Communities of California. State of California. The Resources Agency.

[4] California Native Plant Society [CNPS]. 2016. Inventory of Rare and Endangered Plants (online edition, v7-09c). California Native Plant Soc. Sacramento, California. Accessed on December 16, 2016 from http://www.cnps.org/inventory.

[5] County of San Diego. 2005. Ramona Vernal Pool Conservation Study Ramona, CA. Prepared for County of San Diego Department of Planning and Land

Use San Diego, CA. Prepared by: TAIC and EDAW San Diego, CA.

[6] MSP-MOM. 2014. *Management Strategic Plan Master Occurrence Matrix*. https://www.sciencebase.gov/catalog/ item/53e27963e4b0fe532be3bddf

[7] San Diego County Department of Parks and Recreation. 2013. Ramona Grassland Preserve Resource Management Plan San Diego County.

[8] Ecological Ventures California, Inc. 2003. *Ramona Vernal Pool Preserve 2003 Botanical and Fairy Shrimp Survey Results Draft Report*. Prepared for 805 Properties, 7338 Turnford Drive, San Diego, California 92119.

[9] Bauder, E.T. 2005. The Effects of an Unpredictable Precipitation Regime on Vernal Pool Hydrology. Freshwater Biology vol 50, No. 12: 2129-2135.

[10] Bauder, E.T., A.J. Bohonak, B. Hecht, M.A. Simovich, D. Shaw, D. G. Jenkins, and M. Rains. 2009. A Draft Regional Guidebook for Applying the

Hydrogeomorphic Approach to Assessing Wetland Functions of Vernal Pool Depressional Wetlands in Southern California. San Diego State University, San Diego, CA.

[11] Roberts, F.M., and B. McMillan. 1997. *San Jacinto Valley Crownscale (Atriplex coronata var. notatior)*, 1997 status update. Unpubl. report. U.S. Fish and Wildlife Service, Carlsbad Field Office, Carlsbad, California

[12] Reiser, C.H. 2001. Rare Plants of San Diego County. Aquafir Press, Imperial Beach, CA. Available online: http://sandiego.sierraclub.org/rareplants/

[13] Bauder, E.T. 1996. Exotics in the Southern California Vernal Pool Ecosystem. 1996 Symposium proceedings, California Exotic Pest Plant Council (CalEPPC).